
2019-01-17 at jugsaxony.org
Martin-Luther-Universität Halle-Wittenberg

Give the aspiringGive the aspiring

developer a code kata!developer a code kata!

What the heck isWhat the heck is

Software Craft(smanship)?Software Craft(smanship)?

 Benjamin Nothdurft
 Sandra Parsick

Benjamin NothdurftBenjamin Nothdurft

@DataDuke

Sandra ParsickSandra Parsick

@SandraParsick

FreelancerFreelancer

AgendaAgenda

Brief History - 10"Brief History - 10"

Current State - 5"Current State - 5"

Dojo & Katas - 25"Dojo & Katas - 25"

Clean Code Clean Code - 5"- 5"

Disclaimer: Thanks to our fellow crafters!
 / @MarcoEmrich @DavidVoelkel

https://twitter.com/marcoemrich
https://twitter.com/davidvoelkel

Brief HistoryBrief History

Software DevelopmentSoftware Development

Today we know software development is a mixture out
of craft, research and engineering!

However it was not always like this...

1999-20011999-2001

Idea in the 90s: software factories for
automated software development
First try: Engineering as craft!

2001 - Birth of Agile2001 - Birth of Agile

Agile reaches from Scrum (project view) to XP (technical view)
Focuses however strongly on project process!

Technical excellence largely neglected.

2008 - Agile Hangover2008 - Agile Hangover

Keynote from Uncle Bob:

5 principles to "craftsmanship

over crap"

...later transformed to:

craftsmanship over execution

2009 - Manifesto for SC2009 - Manifesto for SC
2002 - Software Apprenticeship Summit:

no outcome!

2008 - SC Summit: Micah Martin gave a session

many ideas as outcome
whiteboard was signed by everyone

2009 - Doug Bradburry wrote in SC Google group
"The New Left Side" vs. Scott Pfister "Right Side,
Revisited"

 Why a manifesto?

1. vocal community
2. create visibility
3. establish principles
4. develop schools
5. guidance for new devs

2014 - The Software Craftsman2014 - The Software Craftsman

Ideology and Attitude

History
Professionalism
Practises
...

Full Transformation

Recruitment
Interviews
Culture
Pragmatism
Career

Current StateCurrent State

2009 - First SC conferences in USA, UK
2009 - Israeli SCC was founded
2010 - London SCC was founded
2011 - First SoCraTes in Germany

Today - SoCraTes (partner)
conferences/days in:

Germany, Chile, Canaries, Italy, UK,

USA, Switzerland, France, Austria,

Belgium, Finnland, Romania...

ConferencesConferences

SCC CommunitiesSCC Communities

softwarecrafters.org

328 groups
138k on meetup.com

 vs. 1,5M with Agile

http://softwarecrafters.org/

Communities in DACH regionCommunities in DACH region

Members:

29 regional groups
2k on website
9k on meetup.com

 softwerkskammer.org

http://softwerkskammer.org/

ActivitiesActivities
 (BoF)

Open Space
Birds of Feather
LeanCoffee.org
Hackergarten.net
CodeRetreat.org

https://en.wikipedia.org/wiki/Open_Space_Technology
https://en.wikipedia.org/wiki/Birds_of_a_feather_(computing)
http://leancoffee.org/
http://hackergarten.net/
https://www.coderetreat.org/

..but we need to go back to the roots!..but we need to go back to the roots!

many new aspiring devs

principles got lost again down the
road while doing other activities
IT market is booming and we need

technical excellence to tackle our
software products
arising lack of broad TDD knowledge

Dojo & KatasDojo & Katas

Individuals & Interactions

(Learning from each others)

Craftsmanship PrinciplesCraftsmanship Principles

Clean Code

Lifelong Learning

Continuous Improvement

(Practice)

What is a coding dojo?What is a coding dojo?

“ A bunch of coders get together,
code, learn, and have fun. It’s got to
be a winning formula! – Emily Bache

Why do we need a coding dojo?Why do we need a coding dojo?

no managers, no deadlines
safe environment

all professionals need to practice!

not all forms of practice are equal
special way to practice
designed to emphasize skills that
are hard to aquire and easy to lose!

Coding Dojo PrinciplesCoding Dojo Principles

First Rule: Design cannot be discussed without
Code, Code can not be shown without tests.
Come with your relicts

Learning Again

Slow down

Throwing yourself in

Finding a master

Subjecting to a master

Mastering a subject

Kata: a Japanese word, meaning literally: "form" (or), is a detailed

choreographed pattern of movements made to be practiced alone,

but are also practiced within groups and in unison when training!

In Karate: A kata is an exercise where you repeat a form many, many

times, while making little improvements in each repetition!

 What do we practice? What do we practice?

Characteristics of a Code KataCharacteristics of a Code Kata

Definition: A kata is a defined solving flow of a code exercise made
to be practiced many, many times alone, in pairs or as groups (e.g.
MOB Programming) while making little improvements.
Duration: Most exercises are quite short (~ 30 minutes to 1 hour) so
that one can incorporate them as routines in daily life!
Content: Some involve programming, and can be coded in many
different ways. Some are open ended, and involve thinking about the
issues behind programming, e.g. architecture katas.
Focus: The point of the kata is not arriving at a correct answer. The
point is the stuff you learn along the way. The goal is the practice,

not the solution!

“ TDD is used as a default pattern for coding!

What is TDD? Why is it so hard?What is TDD? Why is it so hard?

TDD is not about testing!
TDD = specs/design
QA is minor point
TDD is living documentation
Isolation, Focus
Test new behaviour in babysteps

Goals:

Higher dev speed
Better code quality
Patterns: AAA

FizzBuzz KataFizzBuzz Kata

Task:

Write a program that prints the numbers from 1 to 100 but:

...for multiples of 3 print Fizz

...for multiples of 5 print Buzz

...for multiples of both 3 and 5 print FizzBuzz

Example:

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz,
16, 17, Fizz, 19, Buzz, Fizz, 22, 23, Fizz, Buzz, 26, Fizz, 28, 29, ...

first described in the essay "Fizz! Buzz!” (~1987) by David Langford
as a drinking game of his teenage years in the 1960s

String Calculator KataString Calculator Kata

1. Create a simple String calculator with a method int add(string numbers)

can take 0, 1 or 2 numbers and will return their sum, e.g. “” or “1” or “1,2”

Start with the simplest testcase of an empty string and move to 1 and 2 numbers

Remember to solve things as simply as possible

Remember to refactor after each passing test

2. Allow the add method to handle an unknown amount of numbers

3. Allow the add method to handle newlines between numbers instead of commas.

4. Support different delimiters with pattern: //[delimiter]\n[numbers...] , e.g. “//;\n1;2”

5. Calling add with a negative number should throw an exception “negatives not allowed”

6. Ignore big numbers, e.g. boundary is 1000 then 1001 + 2 = 2

...
Idea by Roy Osherove

http://osherove.com/tdd-kata-1

String Calculator Kata String Calculator Kata (Video)(Video)

Steps 1. + 2. = Solved with preparatory refactoring

https://www.youtube.com/watch?v=VRPXvqVLJMs&list=PL_ueet93U84VIy8O7U4dUV0GyGvuzFAt8&index=2
https://s3.amazonaws.com/media-p.slid.es/videos/475461/VL62n2OY/preparatory_refactorings_with_tdd.mp4

Discussion points for retroDiscussion points for retro

Did you ever write more code than you needed to
make the current tests pass?
Did you ever have more than one failing test at a time?
Did the tests fail unexpectedly at any point? If so, why?
How much did writing the tests slow you down?
Did you write more tests than you would have if you
had coded first and written tests afterwards?
Are you happy with the design of the code you ended
up with? Should you have refactored it more often?

How do I facilitate a dojo meeting?How do I facilitate a dojo meeting?
Upfront:

Book a room, Invite people, Print copies of kata description,
prepare some slides for dojo introduction, inspect the
chosen kata upfront

Start:

Line people up by experience and match people with the
most with the ones with lowest etc. (folding queue)

During:

Facilitator needs to create good/healthy atmosphere,
prompt interesting discussions, keep the code growing,
Try not stop people when they mess up with TDD, let them
learn from mistakes, wait until retro before saying anything!

09:30 Intro/Talks

10:45 Round 1

11:45 Round 2

12:45 Lunch
13:30 Round 3

14:30 Round 4

15:30 Round 5

 Code Retreat Day Code Retreat Day

A format popularized by Corey Haines

45" code + 10" retro + 5" break45" code + 10" retro + 5" break

Kent Beck:

passes all tests
maximizes clarity/intention
minimizes duplication (DRY)
has fewer elements

Corey Haines: https://leanpub.com/4rulesofsimpledesign

https://leanpub.com/4rulesofsimpledesign

ConstraintsConstraints

Basic Activities

Ping Pong
Navigator-Driver

Missing Tool Activities

No Mouse
Text Editor only
Paper only

Missing Feature Activities

No naked primitives
No conditional statements
No loops

Quality-Constraint Activities

Only four lines per method
Immutables only, please

Stretch Activities

Verbs instead of Nouns
Code Swap
Mute with find the loophole
TDD as if you meant it

...more Constraints...more Constraints

Baby Steps
Silent Coding (Mute)
No If
No IDE
No Mouse
Only One-Liners
Every Cell is a Microservice (at Game of Life)
…

...more selected Katas...more selected Katas

Bowling Game Kata (by Robert C. Martin)
Prime Factors Kata (by Robert C. Martin)
FizzBuzz Kata
BankOCR Kata
Ordered Jobs Kata
Roman Numerals Kata
Kebab Kata
...

KataloguesKatalogues

http://kata-log.rocks
https://leanpub.com/codingdojohandbook
https://codingdojo.org/kata
http://ccd-school.de/coding-dojo
http://codekata.com
http://www.thesoftwaregardener.com/agile/dojo-code-katas
http://cyber-dojo.org
http://es6katas.org
https://www.codewars.com
https://exercism.io
http://katas.softwarecraftsmanship.org

http://kata-log.rocks/
https://leanpub.com/codingdojohandbook
https://codingdojo.org/kata/
http://ccd-school.de/coding-dojo/
http://codekata.com/
http://www.thesoftwaregardener.com/agile/dojo-code-katas/
http://cyber-dojo.org/
http://es6katas.org/
https://www.codewars.com/
https://exercism.io/
http://katas.softwarecraftsmanship.org/

Clean CodeClean Code

Different TDD schoolsDifferent TDD schools

London School (Mockist)

 Double Loop ATDD
Outside-In Design

 Detroit School (Classicist)

 Kent Beck, Uncle Bob...

front-door testing
state verification

only mock the process boundary (DB, 3rd party)
design emerges bottom-up / inside-out

"TDD as if you meant it"
"Munich School"

 Fake-it Outside-In Design

"TDD as if you meant it""TDD as if you meant it"

1. You are not allowed to write any production code

unless it is to make a failing unit test pass.

2. You are not allowed to write any more of a unit test

than is sufficient to fail; and compilation failures are
failures.

3. You are not allowed to write any more production

code than is sufficient to pass the one failing unit test.

 by Robert C. Martin / Keith BraithwaiteThree rules

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

SOLID PrinciplesSOLID Principles

by Robert C. Martin / Acronym by Michael Feathers

Single responsibility (SRP) "a class should have only a
single responsibility "
Open/closed "software entities... should be open for
extension but closed for modification"
Liskov substitution "objects should be replaceable with
instances of their subtypes without altering the correctness
of that program"
Interface segregation "many client-specific interfaces
are better than one general-purpose interface"
Dependency inversion "depend upon abstractions, not
concretions"

Other PrinciplesOther Principles

KISS - "keep it simple, stupid"
DRY - "Don't repeat yourself"
YAGNI - "You aren't gonna need it"
DTSTTCPW - "Do the simplest thing that could possibly work"
...
...
...

...and many more principles can be practiced with Katas!

QuestionsQuestions

 Sandra Parsick
 twitter.com/SandraParsick
 info@sandra-parsick.de

 Benjamin Nothdurft
 twitter.com/dataduke
 benjamin.nothdurft@codecentric.de

