
FOCUS8

FOCUS

Automated Quality
Assurance for
Ansible Playbooks

When server instances are provisioned in the cloud, they are rarely set

up manually, but automated using provisioning scripts. The provisioning

scripts describe how the server should be set up. This is normal code, as

we know it from normal software development, except that this code is

specialized on the domain infrastructure. In software development, static

code analysis (“linting”) and automated tests have established them-

selves as means for good maintainability of the production code. Why not

apply this good practice to “Infrastructure as Code” as well? This article

uses the provisioning tool Ansible to describe how automated quality

assurance for provisioning scripts can look like.

Brief Introduction to Ansible

Ansible describes itself as a tool for configuration man-

agement, software distribution, and for executing ad hoc

commands1. Ansible is written in Python. To use it, the de-

veloper does not necessarily need to have Python knowl-

edge, since the Ansible scripts are written in YAML. YAML

is an abstraction of JSON with the difference that it is more

readable2. The ansible scripts are called “Playbooks”.

In order to use Ansible, Python must be installed on the

target machines and access to these machines must be

possible via SSH. Ansible must only be installed on the ma-

chine running the Playbooks (“host machine”); it must be a

Linux system. For target machines running Windows, An-

sible provides rudimentary support. When the Playbooks

written in YAML are executed, Ansible translates them into

Python scripts and executes them on the target machines.

They are then removed from the target machines. A typical

Ansible Playbook looks like this (listing 1):

How a QA Pipeline Works for Ansible Playbooks

In software development, static code analysis and auto-

mated tests are performed continuously in a pipeline on

a CI server. This concept is to be reused for Ansible Play-

books.

First, the developer stores the provisioning scripts in

a version control system. Changes to the scripts that are

checked in to the version control system trigger a pipeline.

A pipeline for provisioning scripts runs through several

steps (see also figure 1): First, a lint checks the code to see

whether it is syntactically correct and whether it follows

best practice. If the lint has nothing to complain about, a

test environment is prepared. The provisioning scripts run

against these test environments. If they have run without

errors, tests are run to verify that everything has been con-

figured as expected. At the end, the test environment is

destroyed again.

9 the cloud report 01—2020

Lint are tools that perform static code analysis.

In the following, the individual steps are presented in more

detail and how they are then integrated into a pipeline. This

is demonstrated using a git repository that includes an An-

sible playbook, scripts to build the test environment, the

tests, and a description of the pipeline. The Ansible play-

book will install an OpenJDK 8 and a Tomcat instance. The

complete project can be found on Github4.

The starting point is the Git repository, which initially

only receives the Ansible Playbook.

|�LICENSE
|�README.md|�setup-tomcat.yml

- hosts: ansible-test-instance

 vars:

 tomcat_version: 9.0.27

 tomcat_base_name: apache-tomcat-{{ tomcat_version }}

 #catalina_opts: �-Dkey=value�

 tasks:

 - name: install java

 apt:

 name: openjdk-8-jdk state: present

 become: yes

 become_method: sudo

Listing 1: Ansible Playbook: For a deeper introduction to Ansible, we recommend the author’s article “Ansi-
ble für Entwickler”3.

Figure 1. All steps in a pipeline

Static code analysis with ansible-lint

First, a lint checks whether the Ansible Playbooks are syn-

tactically correct and whether they are written according

to best practice rules. For Ansible Playbooks there is the

lint ansible-lint5. It is executed on the CLI (listing 2):

In this example, ansible-lint finds several rule vi-

olations. If single rules should not be checked, there are

two ways to exclude them. The rule can be switched off

either globally for the whole project, or for individual cas-

es (so-called false-positive cases). For the global setting a

.ansible-lint file is placed in the root directory of the

project.

|�.ansible-lint
|�LICENSE
|�README.md
|�setup-tomcat.yml

FOCUS10

In this configuration file you maintain an exclude list:

skip_list:

 - skip_this_tag

 - and_this_one_too

 - skip_this_id

 - �401

In this configuration file further behavior can be config-

ured, e.g. in which path they are stored. More information

can be found on the project page4.

If the developer wants to exclude false-positive cases

from the check, she leaves a comment in the Ansible Play-

book.

- file: # noqa 502

 name: /opt

 mode: 0777

 owner: tomcat

 group: tomcat

 become: yes

 become_method: sudo

If the developer lacks further rules, then she can define fur-

ther rules herself with the help of Python scripts (see also

documentation5). Listing 3.

Setting up and Destroying the Test

Environment with Terraform

After the lint has successfully passed, the test environment

for the Ansible Playbooks should be built. This is done with

the help of Terraform6 and the Hetzner Cloud7. Terraform

helps developers to provision cloud infrastructure with code.

Before the developer can get started with the Terra-

form script, she must store a public SSH key in the Hetzner

Cloud account and generate an API token. The Public SSH

Key is later stored in the server instance to be created, so

that Ansible can connect to this instance.

With the help of Terraform, the developer describes

which server type she wants, which operating system, in

which location the server instance is hosted and what is to

be provisioned as the basic setup. For this purpose, the de-

veloper creates a testinfrastrucuture.tf file in the

root directory of the project (listing 4).

|�.ansible-lint
|�LICENSE
|�README.md
|�setup-tomcat.yml
|�terraform.tfvars|�testinfrastructure.tf

As a basic setup, the developer specifies which public SSH

key should be stored on the server (ssh_keys) and that Py-

thon should be installed (provisioner remote-exec).

The public SSH key and Python are needed so that later

Ansible can execute its scripts on this server.

Since the test server instance is to be operated in the

Hetzner Cloud, Terraform must install the required provid-

er plug-in. The developer calls terraform init in the

folder containing testinfrastructure.tf.

Then everything is ready to provision the server in-

stance.

terraform apply -var=�hcloud_token=...�

The developer must give the apply command the variable

hcloud_token with the API token, which the developer

generated before in the Hetzner Cloud console.

As soon as the server is available, the developer can ex-

ecute the Ansible Playbooks and the tests against this serv-

er. Regardless of the success of the Playbooks or the tests,

the server instance is destroyed with the help of Terraform.

The destroy command also requires the API token.

terraform destroy -var=�hcloud_token=...�

$ ansible-lint setup-tomcat.yml

[502] All tasks should be named setup-tomcat.yml:30

Task/Handler: file name=/opt file =setup-tomcat.yml line =31 mode=511

owner=tomcat group=tomcat

[502] All tasks should be named setup-tomcat.yml:57

Task/Handler: find patterns=*.sh paths=/opt/{{ tomcat_base_name }}/bin

Listing 2

11 the cloud report 01—2020

from ansiblelint import AnsibleLintRule

class DeprecatedVariableRule(AnsibleLintRule):

 id = �ANSIBLE0001�

 shortdesc = �Deprecated variable declarations�

 description = �Check for lines that have old style ${var} � + \

 �declarations�

 tags = { �deprecated� }

 def match(self, file, line):

 return �${� in line

testinfrastructure.tf

variable �hcloud_token� {}

variable �ssh_key� {}

Configure the Hetzner Cloud Provider

provider �hcloud� {

 token = var.hcloud_token

}

Create a server

resource �hcloud_server� �ansible-tests� {

 name = �ansible-tests�

 image = �ubuntu-18.04�

 server_type = �cx11�

 location = �nbg1�

 ssh_keys = [�ansible-test-infrastructure�]

 provisioner �remote-exec� {

 inline = [

 �while fuser /var/lib/apt/lists/lock >/dev/null 2>&1; do sleep 1; done�,

 �apt-get -qq update -y�,

 �apt-get -qq install python -y�,

]

 connection {

 type = �ssh�

 user = �root�

 private_key = file(var.ssh_key)

 host = hcloud_server.ansible-tests.ipv4_address

 }

 }

}

Listing 4: testinfrastructure.tf

Listing 3

FOCUS12

Running Ansible Playbooks

After the developer has created the server instance with

Terraform, she executes the Ansible Playbook against this

server instance. In a classical infrastructure, the server in-

stance would have a fixed IP address and the developer

would have entered this IP address in the Ansibles static

inventory so that Ansible knows which server to connect to

static Inventory.

[ansible-tests]

78.47.150.245

Since the servers in the cloud are assigned a new IP ad-

dress each time they are deployed, the developer cannot

use the static inventory in this case. Since the developer

goes against the Hetzner Cloud, she uses the Ansible In-

ventory Plugin hcloud. Therefore an inventory folder

with the file test.hcloud.yml has to be created.

|�.ansible-lint
|�ansible.cfg
|�inventory
 |�test.hcloud.yml
|�LICENSE
|�README.md
|�setup-tomcat.yml
|�terraform.tfvars|�testinfrastructure.tf

The suffix hcloud.yml is important for the file name.

test.hcloud.yml

plugin: hcloud

The developer then has to enter the correct server name in

the Playbook under hosts, which she previously defined

in the terraform script. Ansible-Playbook Snippet

- hosts: ansible-test-instance

When running the Playbooks the developer has to make

sure that she gives the correct Private SSH key and that the

API token is defined in the system environment variable

HCLOUD_TOKEN.

$ export HCLOUD_TOKEN=...

$ ansible-playbook --private-key=/home/

sparsick/.ssh/id_hetzner_ansible_test -i

inventory/test.hcloud.yml setup-tomcat.yml

The API token can also be defined by the developer in the

inventory file test.hcloud.yml. However, since this file

is stored in a version control system, it is not advisable to do

this, since no credential should be stored in a VCS.

Functional Tests with Testinfra

After the test environment has been set up and the Play-

books have passed successfully, tests should be run to

check if the openjdk package has been installed and if

the file /opt/tomcat/bin/catalina.sh exists on the

server.

There are some test frameworks for provisioning tools

such as ServerSpec8, Goss9 and Testinfra10. The main differ-

ence between the test frameworks is the syntax in which

the tests are written. For ServerSpec the tests are described

in Ruby syntax, for Goss in YAML syntax and for testinfra in

Python syntax.

The way the test frameworks work is the same. They

connect to a server that was previously provisioned with

provisioning tools and check whether the server provision-

ing corresponds to the test descriptions.

Here, the tests are written with Testinfra. To do this, the

developer creates the tests folder in the root directory of

the project. This is where the tests are stored.

|�.ansible-lint
|�ansible.cfg
|�inventory
 |�test.hcloud.yml
|�LICENSE
|�README.md
|�setup-tomcat.yml
|�terraform.tfvars
|�testinfrastructure.tf
|�tests |�test_tomcat.py

The developer writes the tests in test_tomcat.py. (list-

ing 5)

Testinfra comes with ready-made modules that simplify

the test description. In these tests the developer uses e.g.

host.package to query the Package Manager or host.

file to test the existence of a certain file.

Testinfra supports several ways to connect to the serv-

er. One way is to reuse Ansible’s connection configuration.

Since Ansible uses a dynamic inventory here, and Testinfra

cannot read all the information from that dynamic invento-

ry, the developer must explicitly enter some configurations

in the Ansible configuration file ansible.cfg. Listing 6.

This file is stored in the root directory of the project. The

developer can then run the tests. (listing 7)

13 the cloud report 01—2020

[defaults]

remote_user=root

private_key_file = /home/sparsick/.ssh/id_hetzner_ansible_test

def test_openjdk_is_installed(host):

 openjdk = host.package(�openjdk-8-jdk�)

 assert openjdk.is_installed

def test_tomcat_catalina_script_exist(host):

 assert host.file(�/opt/tomcat/bin/catalina.sh�).exists

$ py.test --connection=ansible --ansible-inventory=inventory/test.hcloud.yml --force

-ansible -v tests/*.py

===

=

====================== test session starts

===

=

======================

platform linux2 -- Python 2.7.15+, pytest-3.6.3, py-1.5.4, pluggy-0.13.0 --

/usr/bin/python cachedir: .pytest_cache

rootdir: /home/sparsick/dev/workspace/ansible-testing-article, inifile: plugins:

testinfra-3.2.0

collected 2 items

tests/test_tomcat.py::test_openjdk_is_installed[ansible://ansible-test-instance]

PASSED

[50%]

tests/test_tomcat.py::test_tomcat_catalina_script_exist[ansible://ansible-test- in-

stance] PASSED

[100%]

===

=

=================== 2 passed in 11.52 seconds

===

=

===================

Listing 7

Listing 6: ansible.cfg

Listing 5: test_tomcat.py

FOCUS14

#Jenkinsfile

pipeline {

 agent any

 environment {

 HCLOUD_TOKEN = credentials(�hcloud-token�)

 }

 stages {

 stage(�Lint Code�) {

 steps {

 sh �ansible-lint setup-tomcat.yml�

 }

 }

 stage(�Prepare test environment�) {

 steps {

 sh �terraform init�

 sh �terraform apply -auto-approve -var=�hcloud_token=${HCLOUD_

TOKEN}��

 }

 }

 stage(�Run Playbooks�) {

 steps {

 sh �ansible-playbook -i inventory/test.hcloud.yml setup-tomcat.

yml�

 }

 }

 stage(�Run Tests�) {

 steps {

 sh �py.test --connection=ansible --ansible

-inventory=inventory/test.hcloud.yml --force-ansible -v tests/*.py�

 }

 }

 }

 post {

 always {

 sh �terraform destroy -auto-approve -var=�hcloud_token=${HCLOUD_

TOKEN}��

 }

 }

}

Listing 8: Jenkinsfile

15 the cloud report 01—2020

Pipeline Integration

After each step in the pipeline has been considered in-

dividually, the steps are to be merged into a pipeline in

CI-Server Jenkins.

The pipeline is described by the developer in a Jen-

kins file. This Jenkins file describes four stages and one

post-action. One stage each for the code check, build test

environment and execute playbooks and the last stage for

the execution. In the post-action, the test environment is

dismantled, regardless of whether errors occurred in the

stages (listing 8).

In order for this pipeline to work, the developer must

deposit the API token of the Hetzner Cloud in the Jenkins.

So that the token is not stored in plain text, the developer

stores it in the Credential area as Secret Text and as-

signs an ID, which he can then retrieve using the creden-

tial method in the Jenkins file (here: hcloud-token).

Simplification for Ansible Role

For Ansible Role, a structuring option in Ansible to reuse

Playbooks across multiple projects, there is a simplification

for this presented pipeline. With Ansible Role, the devel-

oper can use Molecule to configure the complete pipeline

and the presented tools in one go. She then only needs one

command (molecule test) to execute the complete

pipeline. A very good introduction to Molecule is given

in the blog post “Test-driven infrastructure development

with Ansible & Molecule”11,12 by Jonas Hecht.

Conclusion

This article provides an overview of how to build a quality

assurance pipeline for Infrastructure as Code.

Sources:

 a 1. https://docs.ansible.com/

 a 2. https://en.wikipedia.org/wiki/YAML

 a 3. https://www.sandra-parsick.de/publication/

ansible-fuer-dev/ (German)

 a 4. https://github.com/sparsick/ansible-testing-article/

tree/cloudreport19

 a 5. https://github.com/ansible/ansible-lint

 a 6. https://www.terraform.io/

 a 7. https://www.hetzner.com/cloud

 a 8. https://serverspec.org/

 a 9. https://github.com/aelsabbahy/goss

 a 10. https://github.com/philpep/testinfra

 a 11. https://github.com/ansible/molecule

 a 12. https://blog.codecentric.de/en/2018/12/

test-driven-infrastructure-ansible-molecule/

Sandra Parsick

Sandra Parsick works as a freelance software developer

and consultant in the Java environment.

Since 2008 she is working with agile software develop-

ment in different roles. Her focus is on Java enterprise

applications, agile methods, software craftsmanship and

the automation of software development processes.

She enjoys writing articles and speaking at conferences.

In her spare time Sandra Parsick is involved in the Soft-

werkskammer Ruhrgebiet, a regional group of the Software Craftmanship Com-

munity in the German speaking area. Since 2019 she is a member of the Oracle

Groundbreaker Ambassador Program.

E-Mail: mail@sandra-parsick.de

Twitter: @SandraParsick

Homepage: https://www.sandra-parsick.de

